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Introduction
Alpha-helical transmembrane proteins are essential to many biological processes, 

such as transport, signaling, intracellular communication, cell recognition, and adhesion1.  
These proteins also comprise the majority of drug targets.  However, because 
experimentally determining the structures of these molecules is often slow and difficult, 
relatively very limited experimental structural data for membrane proteins is available in 
protein data banks.  Therefore the ability to instead accurately predict the topology of 
transmembrane proteins is inherently useful.  Any paper on the prediction of 
transmembrane protein topology will begin by agreeing that the problem of 
characterizing protein structures is a critically important endeavor in computational 
biology, and that it is one of the more difficult problems to solve1-9.  Accordingly, there 
are many available programs that conduct such predictions utilizing several different 
approaches.  The strategies of these methods can generally be categorized into two types: 
those that use a residue-based analysis to determine the likelihood of each amino acid to 
appear in each protein region, and those whose goal is to match an overall model of a 
protein to the given amino acid sequence2.

This paper explores five different methods for the prediction of transmembrane 
protein topology and alpha helices, in the chronological order that they were developed.  
These five methods are:  TopPred (1992), MEMSAT (1994), PHDhtm_ref (1996), 
HMMTOP (1998), and TMHMM (1998).  Next, the accuracy of these methods is 
examined, and the question of which is the superior of the five is discussed.

Algorithms

TopPred: Hydrophobicity and the Positive-Inside Rule 

Gunnar von Heijne pioneered a simple method of transmembrane topology 
prediction in 19923.  This method is the basis for the program TopPred (sometimes 
referred to as TOPPRED or TOP-PRED), short for “topology prediction.”  At the time of 
the TopPred method’s development, the standard method for transmembrane topology 
prediction was a simple hydrophobicity analysis.  von Heijne’s method utilizes and builds 



upon this strategy, adding a step of charge-bias analysis to rank all possible structures 
using the positive-inside rule.  His method is highly successful at predicting the topology 
of bacterial inner membrane proteins.

The first step to reaching a prediction using the TopPred method is to compose a 
list of all possible transmembrane segments in the given protein using hydrophobicity 
analysis3.  A hydrophobicity profile is formulated using the GES-scale (Engelman et al., 
1986).  von Heijne used a trapezoidal sliding window (a parameter for calculating the 
hydrophobicity profile) in favor of the commonly-used triangular and rectangular 
windows, since the trapezoid combined the other shapes’ respective strengths of noise 
reduction and realism.  

Candidate transmembrane segments are extracted from the hydrophobicity profile 
by identifying the highest peaks in hydrophobicity above a certain (fairly lenient) cutoff 
(Heijne used a cutoff of 0.5 for this step) 3.  Of the list of potential transmembrane 
segments, those with a hydrophobicity of 1.0 or greater can be deemed “certain” 
transmembrane segments, while those with hydrophobicity between 0.5 and 1.0 remain 
possible, but not definite, candidates.  It is this set of uncertainly classified segments that 
the charge-bias screening step (to follow) works to define.  The cutoff numbers used in 
the method were derived from analysis of transmembrane proteins with experimentally 
verified topologies.

Next, a list of all possible topologies of the protein is automatically generated 
using a computer program3.  At this point, all the possible topologies must include every 
definite transmembrane segment, but may either include or exclude each of the tentative 
segments.  

The next stage of the method is based on the positive-inside rule.  The positive-
inside rule can be summarized as follows: transmembrane proteins tend to have a much 
higher concentration of positively charged amino acids on the cytoplasmic side of the 
membrane than on the periplasmic side (the periplasm is the space between the inner and 
outer membranes of Gram-negative bacteria) 3.  To discern whether a protein conforms to 
the positive-inside rule, we look to the charge-bias.  The charge-bias of a protein is a 
measure of the difference in charge between its cytoplasmic and periplasmic segments.  A 
more positive charge-bias indicates greater compliance with the positive-inside rule, 
which is most often a harbinger of a better prediction.  Figure 1 illustrates supporting 
evidence that the positive-inside rule holds for bacterial inside membrane proteins.



Figure : Chart supporting the positive-inside rule, from von Heijne's 1992 paper introducing the prediction 
method used by TopPred3.

With the positive-inside rule in mind, the charge-bias is calculated for each of the 
contending topologies, which are then ranked in order of decreasing charge-bias3.  Each 
structure is oriented such that its more highly charged side faces the cytoplasm.  The top-
ranked structure is chosen as the method’s final prediction of the protein’s true topology.  
This is where the positive-inside rule comes in; a structure with an erroneous number of 
transmembrane segments has at least one polar domain on the incorrect side of the 
membrane.  This would likely cause the false structure to have a lesser charge-bias than 
the true structure.  In this way the positive-inside rule can protect the TopPred method 
from predicting an incorrect structure in most cases.  Figure 2 depicts an example of how 
the positive-inside rule can help distinguish between accurate and faulty topology 
choices.



Figure : An example of how using charge-biases can help determine the best prediction between two candidate 
structures3.

MEMSAT: Dynamic Programming

The server MEMSAT employs a transmembrane topology modeling method, 
developed in 1994 by Jones, Taylor, and Thornton.  This approach uses a set of log-
likelihood tables compiled from data on well-characterized transmembrane proteins, and 
includes a dynamic programming algorithm that implements expectation maximization to 



predict topology models4.  Expectation maximization seeks to find a model which best 
explains the observed data.

In order to conduct expectation maximization, first a statistical model is defined 
which includes parameters for number of transmembrane segments, topology (delineates 
whether the N-terminus is inside the cell or outside), length, and location of each segment 
within the total protein sequence4.  In this model there are five structural states (Figure 3): 
inside loop (Li), outside loop (Lo), inside helix end (Hi), middle helix (Hm), and outside 
helix end (Ho).  The length in residues of helix ends was arbitrarily set to 4.

 

Figure 3: structural states for the MEMSAT method4.

It is well-known that cytoplasmic, transmembrane, and extracellular protein 
segments each have differing observed biases toward particular amino acids, and this fact 
can be used to derive a topology prediction from an amino acid sequence4.  Quantifying 
these biases using a log likelihood calculation can leverage them for use in modeling 
protein topologies.  For each of the five structural states, the log likelihood ratios of each 
of the 20 amino acids were formulated using the equation 

si = ln(qi/pi)
where si is the log likelihood of amino acid i in a particular state; pi is the frequency of 
amino acid i out of all the amino acids in all the proteins of the data set; and qi is the 
relative frequency of amino acid i in the given structural state.  A score near to zero 
indicates that the frequency of the amino acid in the given state is the same as the 
expected frequency by chance alone.  A positive ratio signifies higher than random 
frequency, while a negative ratio implies a frequency lower than that obtained by chance.  

The log likelihood scores are used as parameters to calculate a score indicating 
whether a given protein sequence is compatible with a particular topology model4.  For a 
single residue, the score is dependent on the identity of the residue and in which of the 
five structural states it resides.  In order to define the highest-scoring set of 
transmembrane helix positions and lengths, MEMSAT uses a recursive dynamic 



programming algorithm that is almost identical to the Needleman-Wunsch algorithms 
used for pairwise sequence alignment.  

As in the Needleman-Wunsch algorithms, a score matrix is formulated (Figure 4) 
to predict the best topology4.  For any given protein, two scoring matrices must be 
defined in order to enumerate every possible topology model, since the N-terminus of the 
protein can lie on either the cytoplasmic or extracellular side of the cell membrane.  The 
dynamic programming algorithm calculates the highest-scoring path possible from the 
matrices, and the corresponding topology is selected as the final prediction (Figure 5).

Figure 4: The scoring matrix method employed by the MEMSAT prediction program4.

Figure 5: The translation of the highest matrix score into a state model of a predicted transmembrane protein4.



PHDhtm_ref: Neural Networks

Rost developed a method for identifying transmembrane helices in 1996 that 
relies on the use of neural networks, named PHDhtm_ref5.  The general idea is to feed a 
multiple sequence alignment to a system of layered neural networks.

The first step in the PHDhtm_ref method is to generate the multiple sequence 
alignment, which should possess a high level of accuracy and contain a wide range of 
homologous sequences for the method to perform optimally5.  From there, the sequence 
alignment and subsequent inputs are processed through several different levels.  The 
structural state of a transmembrane protein segment can be a helix, a strand, or a loop, 
and the segment can either be transmembrane or non-transmembrane.

The primary level is a neural network whose input consists of a local sequence 
window of 13 adjoining residues and the global sequence5.  This sequence-to-structure 
network outputs the 1D structural state of the central residue in the input window.

The output of the first level serves as the input to the secondary level, which is 
another neural network5.  This one is a structure-to-structure network with the same 
output units as in the first level.  Because the sample proteins used to train the networks 
are selected randomly, the examples from one time step to the next are normally not 
adjacent to one another in sequence, which inhibits the first level network’s ability to 
learn length distributions.  Thus the second network is necessary to incorporate 
correlations between adjoining residues, which make predicted segments and helices of 
realistic length possible.  A visual representation of the PHDhtm_ref method up to this 
point in the process can be viewed in Figure 6.

Figure : The workflow of the PHDhtm_ref method for transmembrane topology prediction5.

The third level is simply the arithmetic average over independently trained 
networks.  Some networks are trained on protein segment states in their natural 
proportions, but this causes bias towards some states with high representation (such as 



loops) over others that are less frequent (like transmembrane helices) 5.  This “unbalanced 
training” is complemented by the “balanced training” of other neural networks, wherein 
the network is presented with a set of examples possessing even proportions of all the 
states.  Because one training method tends to overpredict a given state while the other 
underpredicts, the average is a compromise designed to calculate the correct number of 
segments for each state.  This “jury decision” is typically a simple arithmetic mean over 
four networks: level 1 unbalanced, level 1 balanced, level 2 unbalanced and level 2 
balanced.   

The fourth and final level is simply a filter to weed out impossibilities in predicted 
topologies.  It either splits or shortens transmembrane helices that are too long, and 
lengthens or deletes those that are too short5.  Once the predicted model has passed 
through the filter, it is outputted as the final prediction.

HMMTOP –A Hidden Markov Model

In 1998, Tusnady and Simon developed a hidden Markov model prediction 
method.  This method, unnamed at the start, is the method used by the HMMTOP server, 
and will therefore be referred to as “HMMTOP” or “the HMMTOP method” from this 
point forward.  Its creators described the method as being “based on the hypothesis that 
the localizations of the transmembrane segments and the topology are determined by the 
difference in the amino acid distributions in various structural parts of these proteins 
rather than by specific amino acid compositions of these parts.6” Thus, the success of the 
method provided both a new and fairly accurate prediction tool for transmembrane 
protein topology, and a support for its creators’ hypothesis about the theory of 
transmembrane protein topology itself.

The HMMTOP method uses a hidden Markov model to find the most probable of 
all the possible topologies of a protein, which is a prediction for and hopefully a match 
with the experimentally determined topology.  HMMTOP’s HMM is comprised of five 
structural states: inside loop, inside helix tail, membrane helix, outside helix tail, and 
outside loop6.  A “loop” is defined as a sequence of amino acids outside the membrane.  A 
“tail” is a section of a membrane helix that protrudes from the membrane into the 
cytoplasm or extracellular matrix of the cell.  A membrane helix is always sandwiched 
between two tails in the model.  A tail can be immediately followed by either a loop or 
another tail, forming a “short loop” comprised of two tails.  Figure 7 provides a 
visualization of these structural states.



Figure : Illustration and caption explaining the biological basis for the HMMTOP model's five states7.

HMMTOP defines two state types based on the observation that short loops (5-30 
residues) and long loops (more than 30 residues) generally have different length 
distributions6.  These two state types are labeled non-fixed length (NFL) and fixed-length 
(FL).  The difference between the two state types is the number of possible transitions 
from a NFL state versus a FL state; a NFL can be succeeded either by the same state, 
which adds length to that state, or by a transition to the next state.  This reflects the 
observed geometric length distribution of long loops, which can be of arbitrary length.  
On the other hand, a FL state is divided into MAXL states, which constrains its length 
between MINL and MAXL.  From the first MINL substates, the only possible transition 
leads to the next substate, while between MINL and MAXL, a second transition is 
available to leave the current state entirely and move to the next one.  The transitions 
between the substates have varying probabilities.  Loops are categorized as NFL states, 
while tails and helices are FL.

The creators of the HMMTOP method designed the progression from one state to 
the next to follow the natural state progressions of transmembrane proteins.  Figure 8 
illustrates the state architecture of the HMM; notice that the possible transitions between 
states do in fact reflect the state transitions in a transmembrane protein like the example 
pictured in Figure 7.



Figure   3  :   Figure representing the basic HMM architecture of the HMMTOP model, along with an explanation of 
color-coding and shapes used in the figure.

Before the model can be used to make a prediction, preliminary estimates of 
HMM parameters must be set.  These can be derived either randomly or based on 
predetermined values, and are then optimized for the given amino acid sequence or its 
homologs6.  Then the best-fitting state sequence is calculated given the HMM and its 
parameters.  The parameters the creators used to train the model were based on 
transmembrane proteins with experimentally validated topologies, and could be derived 
either from a single sequence or from multiple sequences; training with multiple 
sequences tends to increase the model’s accuracy during testing.

TMHMM –Another Hidden Markov Model:

Sonhammer, Von Heijne, and Krogh developed TMHMM in 1998.  This method 
is based on a different hidden Markov model with seven states rather than five, and can 
distinguish between soluble and membrane proteins7.  

Figure 9 represents the architecture of TMHMM’s model.  In (A) each box 
represents a section of the structure that models a particular region of a transmembrane 



protein (helix caps, center of a helix, areas near the membrane, and globular domains).  
Each box with the same name in the diagram shares the same parameters8.  There are two 
different models for non-cytoplasmic loops, one for short and the other for longer loops.  
This is because short and long loops are the two possible membrane entry mechanisms, 
and the two types of loops have distinct properties from one another.  

In turn, each region model contains a set of HMM states, which model the lengths 
of their respective regions. (B) and (C) of Figure 9 illustrate state structure diagrams for 
helix core, globular, loop, and cap regions.  The arrows in the figure represent transitions 
from one state to another that are acceptable according to the grammatical structure of 
helical transmembrane proteins7.  Each state in a submodel is tied to specific amino acid 
probabilities; these parameters are the same for all the states in one region, but the 
parameters of different boxes are varying8.

Figure 9: (A) The overall structure of the TMHMM model8.  Each box represents a specific region of a 
transmembrane protein.  (B) Submodel of states for the helix core region.  (C) Submodel of states for globular, 
loop, and cap regions

The HMM is trained on a set of transmembrane proteins with known topology, 
including verified locations of transmembrane alpha-helices7.  The total number of HMM 



parameters tracked by the model is 216, which is significantly less than that of neural 
network models, which usually incorporate parameters in the tens of thousands8.  

TMHMM predicts transmembrane helices by calculating the most likely overall 
topology based on the HMM.  However, since there is often some uncertainty about the 
location of the helices –whether they are embedded in the membrane, enclosed in the 
cytoplasm, or in the extracellular matrix –all three of these probabilities can be used to 
display alternative topologies and there relative probabilities7 (see Figure 10).

Figure 10: Figure and caption illustrating the concept of posterior probabilities, wherein all three probabilities 
of alpha-helix location are considered when predicting the overall protein topology7.

One benefit conferred by the use of a hidden Markov model is TMHMM’s ability 
to model the length of a transmembrane helix7.  The distribution of alpha-helix core 
lengths in transmembrane proteins with known structure ranges from 5 to 25 residues 
long.  The helix length possibilities in TMHMM’s model precisely mirror this biological 
rule, as is evident from the helix core model in Figure 1 (B).  All helix core lengths 
produced by the model are between 5 and 25, and whole helices are between 15 and 35 
residues in length when the two caps are added8. 

The model’s accuracy stems from the fact that it is a close mapping of biological 
realities. Not only does TMHMM take into account helix length, but it can also 
incorporate hydrophobicity, charge bias, and grammatical limitations, all in a single 
integrated model7.  



Accuracy of Methods
Each developer or team of developers, in their introductory papers, presents a test 

of their methods and reports on estimated accuracy.  These reports are presented here, 
followed by a discussion of true accuracy measured by outside parties.

von Heijne tested his TopPred method on bacterial inner membrane proteins 
whose sequences and topologies were experimentally well defined3.  It correctly 
predicted the overall topologies of 23 out of 24 proteins (96% accuracy), and identified 
all 135 transmembrane segments from the sample, plus one overprediction.

The MEMSAT method successfully predicted 64 out of 83 entire topologies tested 
(yielding an accuracy of about 77%), including 34 correct of 37 complex multispanning 
proteins4.

With the PHDhtm_ref method, Rost was able to correctly predict 365 
transmembrane helices out of 380 helices in 69 test proteins5.  This corresponds to an 
approximate accuracy of 96%.  Tested the opposite way for overprediction, given 278 
globular non-transmembrane proteins, PHDhtm_ref only predicted 14 incorrect 
transmembrane helices.

HMMTOP achieved about 96% average accuracy in predicting transmembrane 
helices in data sets, and was able to predict the overall topology correctly in the same 
data sets with an average accuracy of 85%6.

The creators of the TMHMM method indicate that, in cross-validated tests on sets 
of 83 and 160 proteins with known topology, their method was successful in predicting 
the entire topology of a protein 85% of the time for both data sets8 (Figure 11).

Figure : reported test results for TMHMM8. 

The developers of TMHMM, when testing their model, also tested other methods 
using the same data sets8, and a resulting table of accuracy is provided in Figure 12.  Four 
out of the five approaches studied in this paper are included; only HMMTOP was left out.  
Not surprisingly, the three other methods tested against TMHMM all performed more 
poorly than the multi-sequence version of TMHMM in predicting overall topologies, and 



all did worse in these tests than in those performed by their own developers (60% vs. 
96% for TopPred, 65% vs. 77% for MEMSAT, and 81% vs. 96% for PHDhtm_ref).

Figure : Accuracy of TopPred, MEMSAT, PHDhtm_ref, and TMHMM, as measured by the developers of 
TMHMM8.

Which of these methods is really the most precise, and why are there 
discrepancies in reported accuracy?  Rost contends that many creators of prediction 
methods tend to overstate their models’ accuracies by using questionable or biased testing 
procedures, such as using only tens of proteins in sample sets used to estimate accuracy5, 
and indeed most of the developers of methods studied here are guilty of using such small 
sample sizes.

The inconsistency in general stems from the fact that there is no standard data set 
or procedure for testing the prediction methods.  Viklund and Eloffson agree, stating, 
“Differences between the evaluations are due to what is being measured (per residue 
accuracy, per protein accuracy, etc.) and perhaps more important, the composition of the 
data set used in the comparison, which may be more or less similar to the data set for 
which a particular method has been optimized.2”  

Even when tested by an outside party with standardized data sets in order to more 
robustly determine the superior method, none of the prediction programs surfaced as the 
clear winner.  Chen et al. found that “some methods are better; none are clearly best… no 
method(s) performed consistently better than all others by more than one standard error.9” 
The fact that no model significantly outperformed all the others is a clue that the 
“perfect” prediction method is still on the horizon.

Although no method can be definitively proclaimed as the best for all cases, some 
types of models do seem to be on the right track.  In a 2004 study, Viklund and Eloffson 
found that HMM methods (such as TMHMM and HMMTOP) were generally more 
accurate than residue profiling strategies utilized by earlier programs2.  When these 
HMMs were trained on multiple sequences, and when evolutionary information was 
additionally accounted for, these methods performed even better.
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